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STUDIES RELATED TO WILDERNESS

The Wilderness Act (Public Law 88-577, September 3, 1964) and related
acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey
certain areas on Federal lands to determine their mineral resource
potential. Results must be made available to the public and be submitted to
the President and Congress. This report presents the results of an audio-
magnetotelluric survey of the Dragoon Mountains Roadless Area (03201) in the
Colorado National Forest, Cochise County, Arizona. The Dragoon Mountain
Roadless Area was classified as a further planning area during the Second
Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service,

January 1979.
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Introduction

Data from 10 audio-magnetotelluric (AMT) soundings (4.5-27,000 Hz) in the
Dragoon Mountains of central Cochise County of southeastern Arizona (figs. 1
and 2) are described in this report. These ten soundings are spaced at
intervals of approximately 5 km (3 mi) and provide a reconnaissance picture of
the geoelectrical structure to interpretive depths of about 2 km (6,562 ft) to
10 km (32,808 f£t) for stations overlying alluvial and mountainous areas
respectively. These data were collected as part of the wilderness mineral
evaluation program of the U.S. Geological Survey (USGS). Data presented in
this report are in preliminary form. Interpretation of this data will be
described in a separate report.

The AMT method consists of recording natural magnetic field variations
and their corresponding induced electric fields in the Earth at discrete
frequencies in the range of a few Hz to tens of kHz. The principles of the
AMT method correspond to those of the magnetotelluric (MT) method (Cagniard,
1953, Vozoff, 1972, Vozoff and others, 1963) but the signals employed are at
higher frequency and originate mainly from atmospheric electrical disturbances
rather than from ionospheric or magnetospheric phenomena. Strangway and
others (1973) have considered the potential and limitations of the AMT method
in mineral exploration. Particular case histories of the AMT method in
mineral and geothermal environments have been described by Strangway and
Kozier, 1979, Hoover and others, 1976, and Hoover and Long, 1976.

The Dragoon Mountains Roadless Area has been subject to previous
geological and geophysical descriptions which provide considerable detail on
its geological setting and mineral potential (Drewes and Meyer, 1983, Klein,
1983). The Dragoon Mountains of central Cochise County are one group of
northwest-trending mountains in southeastern Arizona (fig. 1). The foot of
the range 1lies at elevations of 1,370 - 1,525 m (4,500 - 5,000 ft);
the highest peak, Mt. Glenn, reaches 2,292 m (7,519 ft). The Dragoon Mountain
Roadless Area, about 180 km2 (70 mi2) in size, covers most of the northwestern
part of the range.

Gold and lead vein mineralization has been mined in the Golden Rule Mine
area just beyond the north end of the area, and lesser deposits of base and
precious metals, tungsten and beryllium occur within and fringing the central
and southern portions of the Dragoon Mountains (Keith, 1969 a, b). Larger
deposits of base and precious metals exist in the Johnson Camp and Tourquoise
- Courtland-Gleeson mining areas about 8 km (5 mi) to the northwest and
southeast of the mapped area respectively.

Data Acquisition and Processing

The USGS AMT system (Hoover and others, 1976, 1978, Hoover and Long,
1976) records in analog form two sets of orthogonal magnetic (H) and electric
(E) field amplitudes for each of several frequency bands logarithmically
spaced from 4.5 - 27,000 Hz. These data were collected in May 1980 using
a receiver system that has two frequency dependent band-pass filters. The
filters that were used consisted of one responding with a Q of 50, the other a
slightly narrower Q of 100; the narrow pass being used for the frequencies in
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the 450-4,500 Hz range. Incoming magnetic signals were linearly multiplied by
a factor of 80 in the range of 4.5 - 136 Hz and by 40 for frequencies of 450-
27,000 Hz. The frequency of 270 Hz was used as the common frequency to change
between these two gains. The actual gain used for 270 Hz was dependent on the
signal strength and the operators’ procedure while recording this frequency.
The system additionally allows for the operator to independently contol the
gains for the incoming E and H components. The system response factor (K),
the magnetic coil gain, and the independent E and H gains for each of the
band-pass frequencies recorded are listed in Appendix A.

The frequencies observed at each station (fig. 3) were all natural in
origin except for the band between 10,000~ to 20,000-Hz which partly utilizes
navigation and communication signals.

Simultaneous peaks from each pair of orthogonal E-H records were
digitized and reduced to scalar apparent resistivities (ohm-meters) using a
hand calculator program as described by Klein and Baer (1983). The geographic
E-field orientations chosen for this survey were northwest-southeast (panw-se)
and northeast-southwest (p ne-sw), and are assumed to be parallel or
perpendicular to the major geological structures of the study area. The
logarithmic mean of the data samples at each frequency, the number of samples
scaled, the 95-percent confidence interval of the mean (as a percentage of a
log cycle) and the gains used are tabulated in Appendix A. The confidence
interval is a measure of the statistical consistency in the data but it does
not reveal possible bias due to constant signal distortion. Such bias might
be due to errors in system calibration, cultural electromagnetic interference,
or signal polarization effects. Such "a bias can be discovered only if
independent data is available or if the bias 1is restricted to a limited number
of frequencies. In the latter case, a bias may be apparent because part of
the data does not conform to a consistant or physically plausible plot of
apparent resistivity against frequency.

The reduced data were edited to reject data that were considered
inconsistent with the trend of the sounding curve. The selection of data for
rejection was performed independently on the p nw-se and p _ne-sw curve each
station. In as much as data editing 1is a subjective process, it 1is
occasionally useful to iterate the editing and modelling, in order to test
overall consistency among soundings. Note, for instance, that stations 1, 2,
and 3 have two edited and modelled versions (see Appendices B and C). The
alternate versions are denoted as 1A, 2A, and 3A respectively. These
alternate versions are retained to illustrate possible uncertainties in the
editing when a large initial scatter is present.

Figure 3 shows histograms of the percentage of data rejected for each
frequency and thus indicates which observed frequencies were less reliable.
Figure 4 shows three examples of complete soundings which illustrate the type
of data rejected, and indicates the overall data quality. Those data that are
within the dashed circles were discarded. The solid 1lines show a cubic
polynomial fitted to the logarithmic mean of the edited data.

It can be seen from figure 3 that the frequencies in the 270-2,700 Hz
range were rejected at about the 45-percent level compared to the data in the
4.5-136 Hz range which were rejected at about the 20- percent level. Two of
the examples on figure 4, stations 4 and 9 are among the better data sets of

4
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this survey, whereas station 2 (fig. 4) 1illustrates data typically of the
poorer soundings. Note 1in particular the variable apparent resistivities
in the 450-2,700 Hz range for station 2. These values are attributed to
insufficient signal strength during the recording period. The data rejected
in the 4.5-450 Hz range, about 15- to 40-percent (fig. 3) 1is probably due to
the survey being performed before the onset of the summer period when signal
strength peaks because of increased thunderstorm activity.

An average sounding curve was estimated at each station by fitting a
cubic polynomial to the logarithmic mean of the edited p nw-se and p ne-sw
data. The polynomial fit provides a smooth approximation to the data,
objectively filters out random noise, and provides a means to interpolate
between gaps in the data (Klein and Baer, 1983). The resulting polynomial
sounding curves, along with the edited data are plotted in Appendix B (see
also fig. 4).

The data analysis is based upon a transformation of the smoothed data
(cubic polynomial) to a resistivity-depth function wusing Bostick’s method
(Bostick, 1977, Bostick and others, 1977, Goldberg and Rostein, 1982). The
results of this transformation were refined to better fit the smoothed data
using one-dimensional forward modelling (Klein and Baer, 1983), restricting
the relative modelled error to less than 0.20. The resulting models of
resistivity-depth along with the smoothed apparent resistivities versus skin-
depth are shown in Appendix C.

Table 1 presents parameters that summarize the overall characteristics of
the present AMT data. Data consistency (smoothness) describes the
signal/noise relationship among the data; this is based on the relative misfit
beween the logarithmic average of the edited data (y,, apparent resistivity)
from the smoothed data (cubic polynomial, y.). The percent relative error of
a cubic polynomial fitted to the logarithmic mean of the edited data is given
by

1 ¥ 2, 2,1/2
100:«[W LGy, -y )y, 7]
i=1 i i i
where the summation 1is with respect to the 1i=1, ..., N frequencies
corresponding to those of the observed data. Percent modelled error is
the relative misfit between apparent resistivity calculated for the layered
Earth model (p,) and the smoothed apparent resistivity data (p,) and is given
by
N
1 2 2
100x (= T {(p =-p /o
y 1=1 (“‘1 ai) 3
where the summation is with respect to i=1, ..., N frequencies corresponding
to those of the observed data. The distortion factor (apparent anisotropy)
describes the separation of the p nw-se and the p ne-sw sounding curves. The
values listed refer to the mean value of the absolute logarithmic ratio as

given by

]1/2

L
N

D = abs[log (panw-se/pane-sw)]

i=1



e vy T rrT—r—r
o o sta. 2
]
4
;
E .
-
>
=
5 ]
H 4
&
- 3
g b
; [ station 2 ol
Q pyow-ve e
[ . "
w'E 320w L 3
L 2 awdle pelyngmiel 3
P {92 rojonied date peint
B P and o aasud
- ,__!‘ {1 L] ' lo-z vl_’ 19 N 19
"
3 sta. 4
. “® -4
A 3
2 <
- i » an *
& sr O % & E
2o’ 180 > 3
> 9 13+ 3
- 9 SAnt
» ~ O
2 L]
” " a
2 i
. ' " o
g _ ORAGOON MOUMTAINS AREA
& b etation 4
w'F G Pyrw-se 3
E 42, me-ve _
b 7 oubie pelyasmiel
[ 12’ iejecied dete poine -
FPPTYN T TIY NPT BN R ErweTe
". ' 10 ' 1 2 il ] s \LJ e
10 ST Ty Ter—r-rrr
sta, 9 :
g <
w'f 1
; 3
>
= v ’r 1
> 3
£ '
4 3
-
- e r E
z 3 3
% F ORAGOON MOUNTAINS AREA o
o
s " stelion s
w'F a Jonm-se -1
E 4 Ave-em
: (-ccil. polynemieor
[ {$2releoted dete poine
. aul sl PPV GV BRI
"o L i1 ' 1] 2 19 ' 1] ¢ ] s

Figure 4 -- Examp1e§ of apparent resistivity-frequency curves. The cubic
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present survey, whereas stations 4 and 9 illustrate two of the
better data sets obtained. See also Appendix B.



TABLE 1 -- Summary of data quality. Data consistency and modelled error are
listed as percent relative error (misfit) between the smoothing
function or forward model respectively.

Distortion
Data Percent Factor
Consistency Modelled (Apparent- Directional
Station (Percent) Error Anisotropy) Factor
1 4.4 14.0 0.37 -0.99 (nw-se)
la 2.9 12.2 1.00 -1.00 (nw-se)
2 2.2 13.2 * 1.00 (ne-sw)
2a 2.3 15.4 0.72 0.97 (ne-sw)
3 5.7 14.0 0.21 0.35 (ne-sw)
3a 4.4 11.9 0.28 0.18 (ne-sw)
4 3.3 17.2 0.32 -0.86 (nw-se)
5 2.9 18.3. . ) 0.46 -1.00 (nw-se)
6 2.2 15.2 0.52 -1.00 (nw-se)
7 3.2 13.3 0.33 0.79 (ne-sw)
8 3.4 19.0 0.31 -0.84 (nw-se)
9 3.1 10.7 0.20 -0.75 (nw-se)
10 2.8 11.4 0.15 -0.53 (nw-se)

*all pnw-se values discarded



where the summation is with respect to i=1, ..., N frequencies corresponding
to those of the observed data. The directional factor is the signed mean
logarithmic ratio of the two orthogonal components and describes the
consistency of the shift between orthogonal curves; the sign indicates the
predominant direction of lower apparent resistivity. The directional factor
is given by

1 N

3 121 log (panw se/p ow se)/D
where D is the distortion factor given above and the summation is with respect
to i=1, ..., N frequencies corresponding to those of the observed data. Note
that the directional factor 1is positive or negative unity if there is no
crossover of the curves and becomes smaller as the sign of the numerator is
not constant. The direction of lower resistivity based on the directional
factor is shown in figure 5.

Resistivity Patterns

The results of the AMT data analysis, based on one-dimensional modelling
of the smoothed logarithmic mean of p nw-se and p_ne-sw (Appendix C) are
summarized on Table 2 and in figures 6-f0. Table 2 shows the resistivity-
depth (or thickness) parameters interpreted from the layered Earth modelling.
These parameters are also shown along with the contour maps (figs. 6, 7, 8) of
the smoothed mean apparent resistivities for frequencies that are thought to
reflect lateral resistivity contrasts associated with each layer. Figures 9
and 10 show contoured cross—-sections of resistivity based on the smooth one-
dimensional inversion (Bostick, 1977). It should be noted that for stations
1, 2, and 3 where alternate models are presented, the actual modelled data
used to produce figures 6-10 consisted of 1, 2, and 3. Models 1A, 2A, and 3A
were preliminarily tested and later rejected because of inconsistency to the
overall geoelectrical pattern.

Figure 6 1illustrates the apparent-resistivity distribution for the
frequency of 7,500 Hz. The higher frequency AMT data (7,500 Hz and up) are
probably detecting variations in near surface lithologies, weathering, and
alterations. The interpreted resistivity and thickness of the layer is shown
by each AMT station; the accompanying contours show the general pattern of
lateral resistivity contrasts. On this map, as well as on figs. 7 and 8, the
discrepancies between the interpreted resistivities and the
apparent resistivities are due to the fact that the sounding curves (apparent
resistivity-frequency curves) do not track modelled Tresistivities.
The apparent resistivity at a particular frequency is a weighted mean function
of the total geoelectric structure, where the weighting function peaks at a
depth less than the skin-depth of that frequency and apparent resistivity
(Weidelt, 1972, note also the curves of Appendix C).

Figure 6 1indicates a surface layer, generally 3-10 m (10-66 ft) in
thickness and of variable resistivity. The geological importance of the
higher frequency AMT data 1is relatively low due to the fact that we are
sensing only near surface conditions which could be presumably explored by
alternate and more efficient methods. However, the higher frequency AMT data
allows for a more complete definition of the sounding curve and thus more
reliable modelling of the lower frequency data.

9
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TABLE 2 —- Interpretive summary of modelled layers. The three main horizons
of contrasting resistivity parameters (modelled resistivity and depth or
thickness, see Appendix C) as tabulated are also shown on figures 6, 7, and
8. The tabulated resistivities shown are rough logarithmic means over the
intervals shown as thickness or depth.

Surface Layer Intermediate Layer Deep Layer
Station Thickness Resistivity Depth Range Resistivity Depth Range Resistivity

(m) (ohm-m) (m) (ohm-m) (m) (ohm-m)
1 6 750 6-50 95 50-? 14000
1A 10 58 10-100 550 100-? 750
2 50 170 50-3000 4500 3000-? 275
2A 20 80 not indicated 20-? 8000
3 3 10 3-75 350 75-600 80*
3A 51 72 not indicated 51-? 153
4 15 5000 15-75 230 75-2 5000
5 10 2000 ' 10-60 200 60~ 3000
6 10 700 10-100 90 100-? 2200
7 200 1800 not indicated 200-? 14000
8 100 125 not indicated 100-? 2200
9 20 55 20-200 300 200-? 5000
10 20 60 20-300 170 300-? 6000

*resistivity increases below 600 m.

11
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Figure 7 shows the interpreted resistivities and thickness of the
intermediate-depth resistivity 1layer. These data are shown beside each
station along with the contours of the smoothed apparent resistivity for the
frequency of 270 Hz. This layer is typically 50-300 m (165 - 905 ft) in
thickness. Two patterns of resistivity contrasts between the intermediate and
the deep layers are apparent. Generally, however, the intermediate layer
resistivity is low (90-300 ohm-m) as compared to the higher resistivities
(2,200-14,000 ohm-m) of the deeper layer. Exceptions to this trend are where
the intermediate layer is absent (stations 7 and 8, Appendix C), and where the
"deep" layer indicates a decrease in resistivity (stations 2 and 3, Appendix
c).

Figure 8 shows the interpreted depth and high resistivities of the deeper
layer, along with contours of smoothed apparent resistivity at a frequency of
7.5 Hz, This high resistive (2200-1500 oblm-m) layer was detected at all
stations and indicates a fundamental contrast with the overlying 1layers
starting from 50-300 m (165-985 ft).

Figures 9 and 10 display two resistivity cross-sections of depth-
resistivity based on a one-dimensional inversion of the apparent resistivity
data. As previously described, the cubic-polynomial of the edited data (see
Appendix B) was inverted to a resistivity-depth function by Bostick’s
method (1977). These data were then contoured using a USGS contour program
(Ray Watts, 1983, USGS, Denver, Colorado, unpublished). The layered-Earth
modelled resistivity for the deep layer are also shown; the top modelled
resistivity 1is indicated 1in parenthesis at the approximate depth of the
interface of the deep layer. )
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Appendix A

Tabulation of basic apparent resistivity

Table Al presents the instrument system response factors, K, for each of the
band-passed frequencies recorded using an E-line of 50 m (160.04

ft)o

Note at 750 Hz two K-factors, subscripts a or b, were

determined and are used as reference for tables A2-All.

Tables A2-All present the following data for the stations described in this
report:

STATION:

LAT-LONG:

E-LINE DIRECTION:

HZ:

RESIS:

ERR:

GAIN:

Survey station number designation.

Location of each survey station given in degrees and
minutes for the latitude and longitude of each station.
Minutes are provided with decimal fractions.

Direction of the electric dipole lines, oriented in the
geographic northwest-southeast (NW-SE) and northeast-
southwest (NE-SW) for each station. The E-direction is is
orthogonal to the measured magnetic field for each data
set.,

Frequency of observation in Hertz.

Number of simultaneous sample peaks digitized from each
electric and magnetic field analog record for the purpose
of computing apparent resistivity.

Apparent resistivity: p_ nw-se for E-line direction nw-se
and pyne-sw for E-line direction ne-sw.

95-percent confidence internal in wunits of percent
logarithmic cycle for each calculated apparent resistivity.

Linear gain (G;) of the E and H signals. The gains

recorded in the field are in decibels (g4) and have been
(84p/20

converted to linear gains by G, = 10 . Note at 270

Hz the gains are subscript a or b, referring to the system

response factor for a coil gain of 80:1 or 40:1

respectively (see also table Al).

Al



Table Al -- Tabulation of system response factors.

Frequency (Hz) System response factors (K) Coil Gain

for E-line directed
Enw-se Ene-sw

4,5 2.31 2.98 7

7.5 4,51 4,77

13.6 6.88 10.6

27 13.4 19.4 80:1

45 14,8 23.4

75 29.3 35.0

136 49.5 74,5

270 93.9,, 26.1y 134,, 33.4;, A

450 56.1 62.6

750 121 111

1360 531 654

2700 742 824 40:1

4500 88.4 89.4

7500 31.6 24,1

13600 20.4 : 58.3

27000 1.92 10.6 X

Note: The magnetic receiving coil used a constant gain of 80:1 for the
frequency range of 4.5 - 136 Hz and 40:1 for the range from 450-27,000
Hz. The coil gain was changed at 270 Hz and either gain may be used at
that frequency. The system response corresponding to the 80:1 and 40:1
coil gains at 270 Hz are subscripted a and b respectively, are
referenced in Tables A2-All.

Al



AMT DATA

PROJECT: DRAGOONS
STATION: 1
LAT.,LONG.: 32 0.57,
E-LINE DIRECTION: Nw=SE
HZ N RESIS ERR GAIN
£, H
4,5 9 37.0 21.0 125,251
7.5 7 35.0 8,0 63,126
13.6 5 42,0 15,0 63,126
27.0 S 49.0 3.0 63,63
45,0 8 1220.0 5.0 4,32
75.0 8 1530.0 4.0 2,16
136.0 10  489,0 12,0 4,16
270.0 6 272.0 3.0 -8,16
450.0 8 246.0 6.0 8,16
750.0 7 191.0 3.0 1,1
1360.0 10 176.0 12.0 4,4
2700.0 9 72.0 14.0 8,4
4500.0 9  238,0 7.0 8,16
7500.0 7 174.0 4.0 4,16
13600.0 6 76.0 4.0 4,8
27000.,0 5 $3.0 2,0 4,16

A2

109 58,06

HZ

27,0
45,0
75.0
136.0
270,0
450,.0
750.0
1360,0
2700.0
4500,0
7500,0
13600.0

270060,0

N

o

=)

~

~3

RESIS

8481.0
10028,0
5066.0
9669.0
10780,0
11145.0
3866.0
287.0
1628.0
484.0
788.0
352.0
226.0
175.0
189.0

206.0

E-LINE DIRECTION:

ERR

22,0

NE=~SwW

GAIN
E, H

8,126

4,126



e 2 B e e e i e ol Nk S e

A4T DATA

PROJECT: DRAGOONS
STATION: 2
LAT.,LUNG.: 31 56,01,

E=LINE DIRECTION: NwW=SE
HZ N RESIS ERR GAIN
E, H
4,5 7 29641.0 15.0 4,251
7.5 8 22966,0 6.0 2,126
13.6 7 30575.0 7.0 2,126
27.0 6 22959.0 2,0 2,63
45.0 8 17046.0 3.0 1,32
75.0 7 12781.0 4.0 1,16
136.0 6 6443.0 2.0 2,16
270.0 11 3098.,0 4.0 1,4
450.0 6 103.0 7.0 2,2
750,0 9 25.0 4.0 4,2
1360.0 7 42,0 11,0 8,4
2700.0 8 751,0 10.0 4,8
4500.0 7 631.0 5.0 4,16
7500.0 6 285.,0 4.0 4,16
13600.0 7 346,0 3.0 4,16
27000.,0 8 75.0 6.0 2,16

109 59.62

A3

HZ

136.0
270.0
450.,0
750,0
1360.0
2700.0
4500.0

7500,0

13600.0

27000,0

L S S e b e A L

N RESIS
9 873.0
8 976.0
7 2066.0
g 2814.,0
5 2778.0
6 2017,0
7 1722.0
7 1395,0
5 27.0
7 9.0
7 76,0
7 519.0
7 121.0
7 218.0
8 1329.0
6 99,0

E-LINE DIRECTION:

ERR

19,0

13,0

NE=Sw

GAIN
E, H

16,126

8,126
16,126
16,126

8,63

o Y e s I i R
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AMT DATA
PROJECI: DRAGOOWNS

STATIONS 3
LAT.,LONG.:

31 57,55, 110
E=LINE DIRECTION: HA=SE

HZ N RESIS ERR AIN

S

£, H
4.5 10 482,0 27.0 16,251
75 5 154.0 11,0 16,126

13.6 7 137.0 15,0 32,126

27.0 7 50.0 8.0 16,32
45,0. 7 45,0 6,0 8,16
75.0 & 56.0 4,0 8,16
136.0 6 81.0 3.0 4,8
270.0 7 96.0 5.0 8,16 a

450.0 6 120.0 5,0 4,4

750.0 9  141.0 15,0 2,2
1360,0 7 148,0 9.0 8,4
2700.0 9  206.0 19,0 2,4
4500,0 9  140.0 9.0 4,8
7500.0 9  106.0 5.0 4,8
13600,0 7 37.0 5.0 4,8

27000.0 o 25,0 5,0 4,16

e > et e S oy T - . BN T " P RS AT AR e T AT 20 P AP g I LY o e 4 ot g e e 2®

HZ

45,0
75.0
136,0
270,0
450,0
750,0
1360.0
2700.0
4500,0

7500.0

13600.,0

27000,0

A4

E=-LINE DIRECTION:

N

RESIS

30.0
203.,0
190.0

73,0

58.0

64,0
106.0
106.0
100,.0

77.0
330.0
219.0

96,0

41.0

68,0

137.0

ERR

NE=SwW

GAIN
E, H

16,63
16,63
16,63
16,32
16,16

8,16
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AMT DATA

PROJECT: DRAGOONS

STATION: 4
LAT.,LONG.: 31 56.95, 110 2.48
E-LINE DIRECTION: NwWw=SE E=LINE DIRECTION: NE=SW
HZ N RESIS ERR GAIN HZ N RESIS ERR GAIN
E, H E, H
4.5 13 5301,0 18.0 2,126 4,5 10 3401,0 32,0 4,126
7.5 7 4710.0 16,0 2,63 7.5 6 4791.0 18.0 4,126
13.6 9 2758,0 12.0 2,32 13.6 7 3327.0 13.0 4,63
27.0 10 2683.0 15,0 1,16 - 27,0 6 2134.9 13.0 4,32
45.0 9 2962.0 13.0 1,16 45,0 5 4047.0 10.0 2,16
75.0 6 2496,0 7.0 2,16 75.0 7 4087.0 8,0 2,16
136.0 6 1549,0 11,0 2,8 136.0 6 1969.0 1i8.0 2,8
270.0 6 894.0 15.0 1,4 a 270,0 5 854.0 7.0 2,8
450,0 8 593.0 13,0 1,4 450.0 6 484.0 11.0 2,4
750.0 10 356,00 14,0 2,2 750,0 6 568.0 8.0 2,2
1360,0 9 300,0 12,0 2,2 1360,0 S 1376.0 17,0 4,4
2700.0 12 1137.,0 18,0 1,2 2700,0 7 634,0 11.0 2,4
4500,0 9 390,0 5.0 2,4 4500.0 6 664.0 5.0 4,8
7500.0 6 207.9 7.0 2,4 7500.,0 5 619.0 6,0 2,8
13600.0 ©o- 77.0 5,0 2,4 13600.,0 6 790.0 8.0 2,8
27000.0 7 171.0 6,0 1,4 27000,0 4 1536.0 2.0 2,16



AMT DATA

PROJECT: DRAGOONS

STATIOuw: 5
LAT.,LONG.: 31 S6.12, 110 1.15
E-LIVE DIRECTION: NwW=SE E-LINE DiRECTION: NE=SW
HZ N RESIS ERR 3AIN HZ N RESIS ERR GAIN
E, H E, H
4.5 9 1666.0 17.0 8,126 4,5 8 7811.0 8.0 4,126
7.5 9 1444,0 13.0 8,126 7.5 S5 6613.0 8,0 4,63
13.6 8 1819,0 14,0 4,03 13,6 4 3872,0 4.0 4,32
27.v 7 1843,0 8.0 4,03 27.0 7 4606.0 7.0 4,32
45,0 7 1161.0 3.0 .4,32 45,0 6 3798.0 6.0 2,16
75.0 8 962,0 12.0 4,16 75.0 6 2684,0 7.0. 2,16
136.0 7 396,0 8.0 4,16 136,0 5 2008,0 4.0 2,8
270.0 8 230,0 5.0 2,4 b 270.0 6 183.0 21.0 2,2
450.0 12 245.0 9.0 2,4 450,0 4 692.0 4,0 2,4
750.0 11 189.,0 10.0 2,2 750.,0 7 521.0 8.0 2,2
1360.0 13 401,0 11.0 2,2 1360,0 S 1636,0 6.0 2,4
2700.0 8 414,0 9.0 4,4 2700.0 5 1463.0 7,0 2,4
4500.0 5 291.0 3.0 4,4 4500.,0 5 670.0 3.0 2,4
7500.0 6. 188,0 6,0 4,8 7500.0 6 281,0 6.0 2,4
13600.0 7 75.7 6.0 4,8 13600.0 5 318,0 2.0 2,4
27000,0 9 99.0 3,0 2,16 27000.0 4 627.0 2.0 4,16

A6
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AMT DATA

PROJECT: DRAGOONS
STATION: 6
LAT.,LONG.: 31 55.14, 109 55.65
E=LINE DIRECTION: Nw=SE E=LINE DIRECTION:
HZ N RESIS ERR EAI: HZ N RESIS ERR
=
4.5 8 755.0 12,0 15,251 4,5 8 3286,0 19,0
7.5 8 483.0 13.0 15,126 7.5 4 4320.0 12,0
13.6 8 537.0 7.0 8,63 13.6 5 3600,0 2.0
27.0 8 410,0 10,0 38,32 27.0 9 1677.0 6.0
45.0 7 335.0 6.0 4,16 45,0 6 1959.0 4.0
75.0 6 230.0 4.0 4,8 75.0 7 1649.0 6.0
136.0 7 181,00 2,0 4,8 136.0 6 788.0 4.0
270.0 ¢ 127.0 9.0 2,4 a 270.0 7 492.0 10.0
450.0 12 154.0 10,0 2,4 450.0 6 339.0 7.0
750.0 11 72.0 17,0 2,2 750.0 6 211.0 15,0
1360.0 9 1395.,0 16,0 2,4 1360.0 7 949.,0 13.0
2700.0 7 1115.0 8.0 2,4 2700,0 3 662.0 17.0
4500.0 7 221.0 7.0 4,8 4500,0 6 355,0 10.0
7500.0 7 119.0 2.0 4,8 7500.0 4 153.0 2.0
13600.0 6 56.0 2.0 4,8 13600.0 4 198,09 2.0
27000.,0 5% 252.0 4.0 2,16 27000.0 4 1513.0 6.0

A7



AMT DATA

PROJECT: ORAGJIONS
STATION: 7
LAT. ,LONG.: 31 58,83,
E-LINE DIRECTION: Nw=SE
HZ N RES1S ERR SAIN
E, H
4,5 6 35077.0 17.0 1,126
7.5 3 20134.0 10,0 1,63
13.6 7 27837.0 11,0 1,63
27.0 &8 17890.0 11,0 1,32
45,0 7 17823,0 5.0 1,32
75.0 6 20175,0 6,0 1,16
136.0 9 6804.0 10,0 1,8
270.0 o6 4432.,0 4,0 1,4 a
450,0 5 3818.0 4.0 11,8
750.0 5 6087.0 18,0 1,4
1360.0 B 8783,0 11,0 1,4
2700.0 8 2008,0 8,0 1,2
4500.0 7 ©434,0 9.0 1,8
7500.0 6 3214,0 8,0 1,8
13600.,9 5 2104.0 5.0 1,8
270%0.0 5 972.0 5.0 1,16

109 59,

A8

93

HZ

136.0
270.0
450.0
750.0
1360.0
2700.0
4500.0
7500.,0
13600.0

27000,0

N

o

RESIS

6191,0
15365.0
7639.0
4623,0
4078.0
5484,0
7243.0
5524.,0
2163.90
2324.0
3490.0
1686.0
2354.0
1618,0
2476.0

1995.0

E=LINE DIRECTION:

ERE

30.0
20.0

9.0
20,0

3.0
11.0
18,0

12,0

NE=SW

GAIN
E, H



AMT DATA .

PROJECT: DRAGOONS

STATION: 8
LAT.,LONG.: 31 54.90, 109 57.64
E-LINE ODIRECTION: WwW=SE E=LINE DIRECTION: NE=SW
HZ W RESIS ERR GAIN : HZ N  RESIS ERR GAIN
E, H E, H
4,5 5 690.0 6.0 15,251 4.5 5 3169.0 5,0 4,126
7.5 6 845,0 6.0 8,126 7.5 6 3479,0 6.0 8,126
13,6 5 788.0 5.0 8,63 13.6 6 2920,0 6.0 8,63
27.0 6 665.0 4.0 4,32 27.0 7 1816.0 8,0 4,63
45.0 5 595.0 5.0 4,16 45.0 6 1553.0 7.0 4,32
75.0 5  644.0 1.0 4,16 75.0 6 718.0 9.0 4,16
136.0 5  432.0 2.0 2,8 136.0 4  488,0 3.0 4,8
270.0 5 292,0 2.0 2,4 a 270.0 5 371.0 11.0 4,4
450.0 6 309.0 4,0 2,4 450,0 9 179.0 21.0 4,4
750,0 5 261,0 5,0 2,2 750.0 5 193.0 6.0 4,2
1360.0 4  152.0 5.0 4,4 1360.0 7 255.0 6.0 4,2
2700.0 6 111,0 9.0 4,2 2700,0 5 203.0 9.0 4,2
4500.0 S5  151.0 7.0 4,4 4500,0 4 223.0 5.0 4,8
7500.0 5 165.0 5.0 2,4 7500.0 5 158.0 11.0 4,8
13600.0 4 74,0 2.0 2,4 13600.0 3 111.0 16.0 4,4
27000.0 o 28,0 2.0 4,16 27000.0 5 179.0 2.0 4,16

A9



AMT DATA

PROJECT: DRAGOONS

STATION:S 9
LAT.,LONG,: 31 54,19, 110 0,39
E-LINE DIRECTION: NwWe=SE E=-LINE DIRECTION: NE=Sw
HZ N RESIS ERR 3AIN HZ N  RESIS ERR GAIN
E, H E, H
4.5 8 3492.0 9.0 8,251 4.5 5 2708.0 5.0 4,126
7.5 6 2837,0 6.0 8,251 7.5 7 3439.0 8.0 4,126
13.6 7 2365.0 9.0 4,63 13.6 5 2621.0 6.0 4,126
27.0 6 1870.0 4.0 2,32 27.0 6 1450.0 8.0 4,32
45,0 5 1149.0 3,0 2,16 45.0 6  263.0 10.0 2,8
75.0 7  948,0 6.0 4,16 75.0 6 655,0 5.0 4,16
136.0 6  385.0 4,0 4,8 136.0 8 667.0 12,0 4,16
270.0 9  218.0 8.0 4,8 b 270.0 7  342.0 6.0 2,8
450.0 6 240.0 5.0 2,4 450.0 5 231,0 4.0 2,4
750.0 6 163.0 4,0 2,2 750,0 6 203.0 6.0 2,2
1360.0 & 85,0 3,0 8,4 1360,0 7  425.0 10.0 4,4
'2700.0 8 98,0 12,0 4,2 ©2700.0 6  210.0 7.0 4,2
4500.0 7  108.0 7.0 4,4 4500.0 6 146.0 4.0 4,4
7500.0 5 99,0 2.0 4,8 7500,0 6 108.0 3.0 4,8
13600.0 5 42.0 3.0 4,4 13600.0 5 $1.0 3.0 4,4
27000.,0 4 26,0 2.0 8,32 27000.0 4 104.0 2.0 8,16

Al0
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AMT DATA

PROJECT: DRAGOOnS
STATION: 190
LAT.,LONG.? 31 s51.72,
E=LINE DIRECTION: tw=SE
HZ N RESIS ERR GAIN
E, H
4,5 9 2797.0 18,0 4,126 *
7.5 7 1966.0 §&.,0 8,126 *
13.6 " 6 37,0 11,0 8,63 %
27.0 8 612.0 8,0 4,16 ¥
45,0 7 33,0 13.0 4,16 ¥
75.0 6 191,00 7.0 4,16 %
136.0 6 281.0 8,0 4,8 *
270.0 6 166.0 9.0 2,4 X
450.0 7 169.0 10,0 4,4 *
750.0 8 98.0 10.0 4,2 ¥
1360.0 6 152.0 8,0 8,4 *
2700.0 6 92.0 11.0 8,4 X
4500.0 5 59.0 7.0 2,8
7500.0 7 260,0 9.0 2,4
13600.,0 7 126,0 3.0 2,4
27000.0 5 37,0 2,0 2,8

*
Channel E
nw-se

malfunctional and channel E
ne-s

109 56.81

HZ

4,5
7.5
13.6
27,0
45.0
75.0
136.0
270.0
450,0
750.0

1360.0

2700,0

4500,0
7500,0
13600.0

27000,0

E«LINE DIRECTION:

N

RESIS

4.0
1816.0
1412,0

592.0
466.0
271,0
221.0
321,0
134,0

61.0
132.0

67.0
131.0
947.0
860,0

85,0

was used to measure E
W )

corresponding system response factors are listed under E e
ne—

NE=SA
ERR GAIN
E, H
19.0 16,126
10,0 8,126
8.0 4,32
18.0 8,32
5.0 4,16
4,0 4,16
7.0 8,16
7.6 2,8
12.0 4,4
19.0 2,1
9.0 8,4
9,0 &,4
2.0 4,8
2.0 4,8
3.0 4,16
5,0 #,16
w-se’ The
Table Al.



Appendix B

Graphs of edited data and their cubic-polynomial approximation

The cubic~-polynomial, shown as the smooth solid line was fitted to the
logarithmic mean of the p mw-se (squares) and p ne-sw (crosses) data., The
plots are bilogarithmic apparent resistivity against frequency (Hz). Those
data that are within the broken circle have been rejected because they do not
show consistency to the general trends of the panw—se or p_ne-sw curves. Note
that for stations 1, 2, and 3 alternate solutions have been presented in order
to indicate that there may be more than one single solution that fits these

data, especially when a large data scatter is present.

v
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Appendix C

Graphs of one-dimensional models of resistivity. Each bilogarithmic plot
shows the resistivity-depth model (solid line) for each station along with the
smoothed observed data (squares) and the forward solution (crosses) for the
model presented. The observed data and the forward solution are plotted as
apparent resistivity against apparent skin-depth. The starting model for each
station was a layered equivalent to the Bostick transform of the bicubic
polynomial approximation to the data (smoothed observed data) that is

presented in Appendix B.
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